Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening

admin


  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohaan, M. W. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N. Engl. J. Med. 387, 2113–2125 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klebanoff, C. A., Chandran, S. S., Baker, B. M., Quezada, S. A. & Ribas, A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat. Rev. Drug Discov. 22, 996–1017 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol. 37, 173–200 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borst, J., Ahrends, T., Babala, N., Melief, C. J. M. & Kastenmuller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood 132, 1911–1921 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. Z. et al. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis. Mol. Ther. Methods Clin. Dev. 3, 15054 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong, S. et al. Very rapid cloning, expression and identifying specificity of T-cell receptors for T-cell engineering. PLoS ONE 15, e0228112 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genolet, R. et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. Cell Rep. Methods 3, 100459 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahad, A. S. et al. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng. Des. Sel. 35, gzab034 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spindler, M. J. et al. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat. Biotechnol. 38, 609–619 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, T. R. et al. A T-cell reporter platform for high-throughput and reliable investigation of TCR function and biology. Clin. Transl. Immunol. 9, e1216 (2020).

    Article 

    Google Scholar
     

  • Fahad, A. S. et al. Cell activation-based screening of natively paired human T cell receptor repertoires. Sci. Rep. 13, 8011 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Lombardi, R. et al. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity 55, 1953–1966 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattaneo, C. M. et al. Identification of patient-specific CD4+ and CD8+ T cell neoantigens through HLA-unbiased genetic screens. Nat. Biotechnol. 41, 783–787 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnaud, M. et al. Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat. Biotechnol. 40, 656–660 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2022).

  • Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefranc, M. P. et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413–D422 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. & Porter, E. Compositions and methods for T-cell receptor gene assembly. Patent WO2020206238A2 (2020).

  • Klein, J. C. et al. Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Res. 44, e43 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt, T. M., Greenberg, P. D. & Nguyen, H. N. T cell immunotherapy specific for WT-1. US patent US20160083449A1 (2015).

  • Borbulevych, O. Y., Santhanagopolan, S. M., Hossain, M. & Baker, B. M. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J. Immunol. 187, 2453–2463 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, L. A. et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J. Immunol. 177, 6548–6559 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody–producing B cell receptor–positive human memory B cells by genetic programming. Nat. Med. 16, 123–128 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moravec, Z. et al. Functional discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening: validation in CD8 T cells. NCBI Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1068078 (2024).

  • Moravec, Z. et al. Functional discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening: validation in CD4 T cells and OVC190 TCR screen. NCBI Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1068299 (2024).

  • Moravec, Z. et al. Functional discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening: NKIRTIL063 titration screen. NCBI Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1068301 (2024).

  • Moravec, Z. et al. Functional discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening: NKIRTIL063 neoantigen screen. NCBI Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1068303 (2024).



  • Source link

    Leave a comment